
[image: image1.jpg][image: image35.png]
[image: image9.png]
[image: image10.png]
[image: image11.png]
[image: image12.png]Real time stereoscopic video streaming.

[image: image13.png]
Raphael Gruaz
Responsible:
Pr. F. Uchio

GI06, I2RV
UTBM tutor:
Pr. S. Galland

Summary

4Special thanks.

5Introduction

6Project background

· 6Japan

· 7The university

8Technical difficulties

9Preliminary study: the DV format, and Linux drivers.

10Streaming under Windows: DirectShow

12The RTP Sender

· 12Setting up the filter

· 15Filter features

17The receiving filter

· 17Finishing the connection process.

· 19Being a file source filter…

21Network model and protocols

21Our network model

· 21The current streaming vision

· 22The proposed model

23RTP

· 24The RTP header

· 25Multicast or multi-connections

· 26Optimizations: Regions of interest & “On the fly” compressions

29Stereoscopy & displaying

30Active stereoscopic glasses

313D screens: Sharp 3D LCD Display

33Performances and high-speed graphics processes

· 34From 2D videos to 3D scenes

· 36The programmable pipeline

· 38A bit closer: HLSL

· 41Conclusions

42Appendix

42A custom file type: .rml

43Web Server & Web notification

· 44Servlet-like modules

· 45Web server

· 46How to use the server with our application

48NSIS Installers

49TeapotWare

50Conclusion

51Lexicon

52Bibliography

Special thanks.

I would like to particularly thank my professor, Mr. Uchio, who greatly helped me for both the human part and the technical part of my internship. I felt really pampered in his laboratory.

I also want to thank Mr. Rafael Sierra, for his friendship, wise advices, and accurate supervision;-)

My stay in the lab would not have been so pleasant without the presence of Mrs. Toyokuni, who taught me about Japanese culture, gave me further explanations about the language, and could even stand a such bothering French boy.

It leads me to someone else I want to thank: the professor Higashi, who knew the right words to use for teaching Japanese to non-native English speakers.

The last, but not the least, I thank my girlfriend, Naoko, for helping me out in this great-but-hard-to-understand country.

Of course, I am grateful to many others, but the list would be too long to be written. So let me thank Mrs. Nakatani, Pr Tokoi, Pr Wada, Philippe Ngo, everyone in my laboratory, and all the other (and they are many) who helped me during this internship.

Introduction

The aim of this project is quite easy to understand. The way to implement it, however, is a bit more complex.

There are two main actors in the system: the expert, and the farmer. The farmer can see objects, like fruits, or vegetables, but sometimes would appreciate advices from an expert in order to improve his farming. So he will wear a special helmet, containing two cameras. Those cameras will record exactly what the farmer is looking at, and transmit the video streams over Internet. Somewhere else, the expert will receive those streams, and the application will recompose a 3D picture. In that way, the expert will see exactly what the farmer is seeing, as far as he can use stereoscopic glasses, or special 3D screen.

To sum up, the project is real-time stereoscopic streaming.

Before explaining further the project, I will give a short description of the working context, the country, and the university.

Project background

Japan

[image: image14.png]I did this internship in the University of Wakayama, of the Wakayama prefecture in Japan. This country is interesting from many points of view: cutting edge technologies stand along with traditional usages, glass buildings are neighbors of temples and shrines, and the peaceful character of Japanese people contrast with the wildness of nature. Within six months, I could experience five earthquakes, four typhoons, and volcano & tsunamis were not so far. On the other hand, Japanese gardens, natural hot springs, Japanese food and temples balance very well all the possible drawbacks.

Wakayama is near the shore, south of Osaka.

I also could get some time to study Japanese (2h per week), which greatly helped me, since most of people here speak only Japanese.

The life here is quite expensive, but I could handle thanks to a short part-time job for the LIMSI (part of the national French research center (CNRS)). Working mainly on the university project, and on the LIMSI project on weekends, there was not plenty of time for tourism. However I could visit enough to be impressed by the cultural background of Japan.

The university

The internship took place in the Networking lab of the university. There are several research axes, like wireless networking, water activity controlling, or GPS data analyzer. All those axes are applied to a more general purpose: agricultural improvement. Uchio sensei, the responsible of the lab supervised all those projects, and Mr Sierra was supervising me. He is working on a thesis about network improvement, mainly using regions of interest, so my project was directly linked to his.

On the hardware point of view, I must say we have been pampered from Uchio sensei. We could get every hardware we needed, regardless the price. The difference between Japanese research and French one is impressive from this point of view (I cannot forget my university (Orsay, Paris XI) once had to close in winter because they had not enough money to pay the heater system fees;-)

So with a strong help for any Japanese question from both my lab mates and my Japanese teacher, and an ideal working environment, it was a real pleasure to go working everyday.

Technical difficulties

For this project, we identified several “hot points”:

· Streaming a video of a type we do not know (compressed, raw data, RGB, YUV…). We do not know the type mainly because at the time we developed the application, we had no idea which camera to use.

· Maintaining a good quality of video, even if the network is congested (congestion control).

· Adapting the receiving application to stereoscopic devices like shuttles or 3d screen, knowing that none of the stereoscopic devices followed the same standard.

· Find a way to improve the speed of then system, and allow re-encoding “on the fly”
· Modifying the IP header of our packets

Knowing all those possible hot points, three solutions came out: To simplify the network process: a new networking model for streaming. To improve the speed of the application: using the processor of the 3D graphic card to perform some costly operations. To make everything simple for the final user, building a website and dynamically update the streams information.

However, all those solutions, particularly the first and the second, were not sure to be possible. So the secondary objective of this internship was to research and determinate whether those solutions were suitable or not.

Preliminary study: the DV format, and Linux drivers.

In order to understand how to manipulate DV streams, the first thing we developed was a simple DV player, running on Linux (Red Had9), with a GTK+ interface.

The first step for this part was to install the proper DV drivers, then to get an API to decode a DV stream, and finally build a GTK+ interface, and display the decoded stream onto the window.

In order to get into the network part of the project, we first studied DVTS: an open source application for transmitting DV packets over Internet. DVTS uses RTP, so it looked pretty similar to the application we wanted to build. In addition, DVTS works under many operating systems, so our first idea was to use the source code of DVTS to build our own application.

We had to give up this idea quite early, because we could not get the source code for the windows version, and our initial stereoscopic glasses worked only under windows. In addition, DVTS supports only DV, and knowing that with a little bit of patience we could use all the codecs used by media player, it would have been a pity to tie to this limitation.

Anyway, this preliminary study helped us to understand a basic media format, DV, to deal with Linux drivers and GTK user interfaces, and to get used to RTP transmissions.

Streaming under Windows: DirectShow

DirectShow is the part of DirectX handling every media operations. DirectX is built on Microsoft COM (Common Object Model), but it is even easier to notice that when working with DirectShow. Everything is component, so everything is COM…
The aim of this report is not to explain COM in detail, however a short comment should be appreciated.

This model is mainly based on interfaces. It allows changing interfaces at runtime, which is a quite useful functionality. For instance, a programmer wants to write a Direct3D 7 compatible software, because he would like to reuse an old code he wrote for direct3d 7. Unfortunately, he installed DirectX 9, and most of the users of his application also use DX9. Thanks to COM, he will not have so much trouble to build his application, because he can “ask” every object to provide a DX7 interface. More concretely, the QueryInterface method is designed for this task.

It is also possible to register COM object in the registry base. In most of cases, it is Windows components. And DirectShow filters belong to this category.

To render a media, DirectShow use a smart connections process: for every media, DirectShow build a graph, insert the appropriate source filter (a file reader, a web cam, a network source etc…), and try to connect the output pin of this filter to the input pin of a renderer, or course inserting transition filters.
[image: image15.png]An example of simple graph: source filter is a web cam, there is a divX encoder as intermediate filter, and the rendering filters are a file and a window. To sum up, this graph save the data from the camera into a divX encoded file, and display a “preview” window.

For instance, what happens when a user open a MPEG4 file. The media player only knows it is a file, so a file source will be inserted into the graph. This file source will identify the type of media it is, I.e. MPEG4, thanks to some recognition patterns written in the registry base. So the output pin of this filter will be typed as “MPEG4 stream”.

Then the media player will search (once again in the registry base) which filter is associated with MPEG4, and will find the MPEG4 Decoder. At this time, if no filter could be associated with the stream, Media Player displays the well-known message “cannot find the codec”. As soon as this filter is added to the graph and connected to the source filter, it will give “VIDEO” as the main type of its output pin. This way, DirectShow can complete the graph by adding a video renderer, and start playing it. Of course, this is a very simple description, because I didn’t talked about the subtypes negotiation (RGB24, YUV, R5G6B5, etc…) or about how to bind the rendering filters to the main application. Nonetheless, it sum up globally the behavior of Direct Show.

Then… all we had to do was to write a couple of filters.

The RTP Sender

The main part of the media section of this project was to try to make possible for a graph to be split between two distant computers. Beginning the graph on one, and finishing it on the other. Although both the sender and the receiver filter have been developed at the same time, I will start explaining the sender before the receiver.

Setting up the filter

A filter is nothing more than an ATL COM Dll., so in order to create a new filter, the easiest way is to create a new ATL COM Wizard project with Visual C++. This kind of Dll is a bit special, in a way that it has to export specific symbols like “DllRegisterServer” or “DllUnRegisterServer”, and has to comport a template and a template size in order to be registered as a component.

In order to connect a filter to another, DirectShow uses a smart type negotiation. In other words, the first step to develop a filter is to define its pins.

The sender can be seen as a rendering filter, which means it has only input pins and no output.

[image: image2.png]
The sending filter and its property box.

DirectShow will connect a filter with another depending whether the media types of the two pins to be connected are compatible or not. In the case of the sender, we specified no type, which means everything can be connected to this pin. Since the aim of this filter is to send streams, we didn’t want any restriction at this level.

The filter itself, the media types supported and the pins have to be registered in the registry base. This is done when the filter is registered as a windows component.

Although this operation can be done manually using the registry editor of Windows, it is easier to use regsvr32 to register any control or component.

Here is the part of the code used in the registration of the component. This part has to be present in the DLL source code.

const AMOVIESETUP_MEDIATYPE pintype =

{

 &MEDIATYPE_NULL // clsMajorType

, &MEDIASUBTYPE_NULL // clsMinorType

};

const AMOVIESETUP_PIN pins[] =

{ { L"Input" // strName

 , FALSE // bRendered

 , FALSE // bOutput

 , FALSE // bZero

 , FALSE // bMany

 , &CLSID_NULL // clsConnectsToFilter

 , L"" // strConnectsToPin

 , 1 // nTypes

 , &pintype // lpTypes

 }

};

const AMOVIESETUP_FILTER filter =

{

 &CLSID_CRTPSendFilter // clsID

, FILTERNAMEL // strName

, MERIT_DO_NOT_USE // dwMerit

, 1 // nPins

, pins // lpPin

};
CFactoryTemplate g_Templates[]=
// Class factory template
{ { FILTERNAMEL

 , &CLSID_CRTPSendFilter

 , CRTCSendFilter::CreateInstance

 , NULL

 , &filter }

};

int g_cTemplates = sizeof(g_Templates)/sizeof(g_Templates[0]);
As we can see, we first declare the media type we will use, then the input pin, then the filter, and finally the entry point of the dll to create an instance of the filter. (CRTCSendFilter::CreateInstance is this entry point).

Thanks to this mechanism, any application can create an instance of our filter, even if they don’t even know the name of the class.

Calling the COM function CoCreateInstance will load the DLL, if it’s not already loaded, and call the entry point specified in the registration, i.e. CRTCSendFilter::CreateInstace.

Here is an example for creating a filter instance only knowing its GUID:

CoCreateInstance(CLSID_CRTPSendFilter,NULL,CLSCTX_INPROC_SERVER,IID_IBaseFilter,(void**)&sender); (sender is a pointer on IbaseFilter interface, CLSID_CRTPSendFilter is the GUID of the sending filter)
Filter features

Even if the registration seems to be a painful task, it only allow user to call the creating function. If nothing more is implemented, the filter will not be able to be inserted into a graph.

Since we set the CreateInstance, we first have to define this method, which will merely return something like “new CRTCSendFilter”. CRTCSendFilter inherit of CbasRenderer, which is the base class for every rendering filter.

Then we have to overload the “CheckMediaType” method. DirectShow will call this method to ensure a connection is possible or not. At this time of the development, we had a simple filter that could be inserted into any graph, and connected to any other filter, except rendering filters.

[image: image16.png]Once connected to another filter, the type of the input pin changes

So from this time we could start working on the real features of the filter. The purpose of this filter is to put the data into RTP packets and to send it thru the network. But those packets will be useless if the receiver doesn’t know what kind of media it is. So the main function of this filter is to act like a server, and to “answer” two types of queries from the client applications:

· Which media type are you streaming? (Sound, Video, Compressed, Raw…)

· What is the format of your stream? (For instance uncompressed RGB24, RGB32 …)

Of course, the media type and the format are completely unchanged: they are retrieved from the filter connected to the sending filter. For instance, if a simple web cam is connected, the type will be “video”, and the format “RGB24” for instance. On the other hand, if a divx compressing filter is inserted between the web cam and the sending filter, the media type will be “divx”, and the format will contain compression parameters. (Of course it is a bit more complex, but this mere explanation should help understanding).

We had to keep in mind that RTP is over UDP, and UDP is a connectionless protocol, which means there is no real notion of client/server with a UDP connection. To make it easier, any UDP sending application will ask the user where to send packets, and will actually send packet even if the address is not correct, or if the receiver is not online anymore. To sum up, there is no notion of connection. But since we had to negotiate the type of the media, and its format using TCP, which is connection-oriented protocol, we could simulate a connection-oriented protocol with UDP.

Doing this was not a heavy task: once the client connects the TCP port, the sending filter will store his IP address, and will also negotiate a port number to use. Once port number and IP address is acquired, the filter will use them to send RTP data.

The advantage of connection-oriented transmissions is that we can detect disconnection, and we do not need to tell the sender where it should send the data.

Once the media type is sent, the receiver can understand and decode the RTP stream sent to him.

To sum up, the main objective of the sending filter is to split data into RTP packets, and to send the type of stream and the format to any receiving application.

The receiving filter

The RTP receiver is of course the exact opposite of the sender. It will connect a sending filter knowing its address and TCP port, get the media type and the media format, send the local UDP port to use and start to assemble received packet to produce the same buffer as the sender got from its connected filter, and finally transmit this buffer to the connected filter of the receiver. There is no need to detail more about transmission, because it is exactly the opposite of what the sending filter does. However, I will focus on how this filter completes its negotiation, and an additional feature of this filter: being a file source filter.

Finishing the connection process.

The receiving filter is the exact opposite of the sending filter: it is a source filter rather than a rendering filter. That means it only has output pins. When the filter is inserted, the media type of its output pin is not defined. In the case of an input pin, it means every media type is acceptable. However in the case of an output pin, that means this pin cannot be connected to anything.

[image: image17.png]
Here is the filter’s property box displaying the output pin’s properties.

This filter does not only implement the IBaseFilter COM interface, but also ISpecifyPropertyPage. Thanks to this mechanism, it is possible for any programmer to “query” the component for its property page, and to display it. The way to write a property page is usually Win32 (messages programming), and through this page, we can prompt the user for the information we require: the connection data.

[image: image18.jpg]
The custom property page of the receiving filter.

Once the user validates those entries, the receiver tries to connect to the sending filter, using the specified IP address and port number. If the connection is established, the receiver will request the media type, then the format. After that, the output pin will dynamically be adjusted, so DirectShow will be able to complete the graph. The port number to be used on the local computer is sent to the sender during this type negotiation, when requesting for the format. This way, the sending knows which port to use for streaming data. (The filter already knows the IP address of the receiving computer because we use TCP for negotiating the media type).
[image: image19.png]After establishing a connection to the sending filter, the receiver can set its output pin, so the graph can be completed… and run.

[image: image20.png]
As soon as the graph is completed, it can be run. The main running loop is of course reading RTP packet from the network, and recomposing the same data stream that the one processed by the sending filter. Of course, if the receiving graph is played while the sending one is not, the type negotiation will remain possible, although no data will be sent. The result will be a black window for the receiver.

Thanks to this method, we are now able to build a graph split between two remote computers. That should make easier the task of programmers willing to write a streaming application, because they only need to consider the receiver as a source filter, exactly like a file or like a web cam.

Being a file source filter…
On the previous part we explained the filter is a source filter, exactly like a file or a web cam. Actually the last feature of this filter is that it is really a file source filter. Of course, we can manually insert it into a graph and enter the connection data through the property page, as illustrated before. On the other hand, we can use a custom file type, “.rml” containing all those pieces of information. A bit more technically, the receiver filter also implements the IFileSourceFilter COM interface. And as soon as the file extension is registered in the registry base, DirectShow will try to open every “rml” files with this filter. Of course, we need an upper level association: if the application used to open a .rml file doesn’t use DirectShow, no component will be created. But Media Player, for instance, is based on this technology. So if the user try to open a .rml file with Media Player, a graph will be created, and the file type will be identified, so the RTP receiver filter will be inserted instead of the legacy “File reader” filter.

[image: image21.png]To sum up, this feature has 2 enormous advantages: first, for the final user, only the codec installation is required. Once it is done, he can receive network streams merely with Media Player. Then for the programmer, he doesn’t need to think about networking at all: for him, it will be exactly like opening a MPEG movie, or any kind of media file. No port number, no IP address, and no protocol. Just opening a file. And most of media programmers are quite at ease with “opening files”
Media player displaying a remote webcam stream, DivX encoded.

Network model and protocols

Our network model

The current streaming vision

Before introducing the model we used for the project, I will try to describe the existing streaming model.

In the current vision of streaming, the receiving application “knows” exactly what kind of data it is supposed to receive, so the way to handle those data is obviously implemented within both the sender and the receiver.

For instance, if we consider streaming a sound, the “sending” application will do something like

· Read the sound from a microphone or a file

· Compress the sound to gain bandwidth, using “xxx” method

· Send the compressed buffer

And of course, the receiving application will have the opposite process:

· Receive from network

· Uncompress using “xxx”
· Send to the speaker
Then… what if the developers want to change the compression method? They will probably have to modify both applications. And the problem is even bigger if they want to send video instead of audio.

So in most of case, an application used to receive a stream of a given type will not work for another type of stream, merely because it doesn’t know how to handle it.

The proposed model

[image: image3.jpg]
As explained before, we use custom DirectShow filters, which have to be seen as Windows low-level components. It can be considered as an interface, and since the network part is done within those components, the user of those filters will not even know which process they are doing.

With this model, the sending application works quite like in the current model, except it will send the row data and the media type.

As for the receiver, the decoding graph will be built according to the transmitted media type, and NOT statically, as it’s often the case. The advantage is simple: This application doesn’t need to know where the data are from, nor the type of the data, nor the encoding method.

If we consider an application displaying a remote video, it will work exactly the same way for a remote web cam than for a divX-encoded file.

Another good point of this model is its flexibility to encoding. It’s quite easy to insert an encoding filter between the source filter and the sending one, and application with dynamic encoding can be written easily above this components layer.

(By dynamic encoding, I mean an application that would start by sending raw data, then if the network is congested, will choose an encoding method and send encoded data)

RTP

Streaming a video (and in our case, a couple of video) generally require a large bandwidth. Also the data are generally not crucial, so it is not so important if a packet is lost.

TCP provide an interesting layer, however is not suitable here, because of acknowledge procedure (if a packet is not received, then the sender will send it again), and because a TCP frame contains a lot of useless information for our application.

On the other hand, UDP could have been used, but doesn’t perform any control, and cannot tell us if a received frame is outdated or not.

So RTP is a protocol over UDP, without controlling packet, but allowing us to transmit the pieces of information we require for real time streaming.

Unlike UDP and TCP, RTP is an application-layer protocol, which means we had to implement it directly within the DirectShow components.

Using RTP is not so hard: we merely need a UDP connection, and we include the following RTP header on every packet sent. It is a protocol belonging to the application layer, so even the definition of this protocol is quite clear; many applications modify a bit the use of the header. So did we for our filter. The Payload Type is not really a payload type, the sequence number is not initialized to a random value, but to 0, and we reset this value every new frame. And the timestamp is not really a time.

However those modifications seem important, we are still compliant with the RTP standard. The best proof is that DVTS can read the packets we sent, and display them.

The RTP header

The RTP header contains the following fields:
<------------------------ 32 bits ------------------------->

	V=2
	P
	X
	CC
	M
	Sequence number

	Timestamp

	Source identifier

	Contributing Sources identifier (CSRC)

Here below is the meaning of all those fields, and the way we use them.

· Version V: It contains the version of the protocol. Most of time set to 2. The length of this field is 2 bits

· Padding P: 1 bit. If ‘1’, the last packet contains additional bytes to keep a constant size.

· Extension X: 1 bit. If X=1 the header is followed by an extended header.

· CSRC count CC: 4 bits, defining the number of CSRC of the header
· Marker M: 1 bit, use defined by the profile. In our case, 1 means “packet belonging to a key frame”.

· Payload Type PT: 7 bits, define the type of the media.

· Sequence number: 16 bits, initial value is set randomly, and is incremented for each packet. Usually used to detect missing packet. We modified a bit the use of this field to match our needs: The sequence number is still incremented 1 by 1, but is set to 0 for the very first packet of every frame. So we can use this field as an offset for the packets we receive.

· Timestamp: 32 bits, Ideally the time of the first byte of the packet is being sent. In our application, this time is incremented by 1 every frame. So the couple sequence number-timestamp is a unique identifier for our packets.

· SSRC: 32 bits, usually a random number that identify the source.

· CSRC: CC*32 bits, Contributing sources

Multicast or multi-connections

A common way to broadcast a media is to use multicast. Multicast packets are sent to a specific IP address, belonging to the range of “multicast” addresses. By doing this, routers will not “route” the packet, but rather forward it to each of its interfaces. Because the data will be duplicated many times, it is easy to imagine many receivers. The biggest advantage of this method is the cost in time: the sender sends data only once, and the routers do all the duplications.

Otherwise, because of the exponential duplications, the networks of all over the world may become congested. This is for this very point that most of routers disable the multicast function. Anyway, we had choice to use this method to broadcast our packets, or to use another way: multi-connections.

Multi-connections is an explicit name: that means for every client a new connection is created. Of course, the more there are clients, the busier will become the sending application. However, this solution is far more elegant than multicasting our packets, which would generate quantities of useless data. Thus, this is the one we decided to use for our sending filter. When a TCP connection completes its handshake (asking for format), we retrieve the IP address of the client, we retrieve a local UDP port to use, and finally we create a new RTP connection.

The only problem of the final version is that we haven’t implemented the disconnection procedure yet. So when a client exits, the sending application keeps sending data.

Optimizations: Regions of interest & “On the fly” compressions

The first idea to optimize the network performances was to use regions of interest. In other words, to split the image or the video into 2 distinct regions: the Region Of Interest (ROI), which is mainly the inner part of the video/image, and the Region Of Non Interest (RONI), which is of course the outer part of the image or video.

The idea was to “mark” the packet in order to know if they belong to the interesting region or not, then the router would use 2 queues, and sort out the different packets. If congestion occurs, the router will start dropping packet from the RONI queue.

In order to mark the packets, the sending filter merely uses a kind of Euclidean distance between the offset of the data about to be sent and the center of the screen. The good point of this idea is this optimization is performed by routers, not by the sending computer. On the other hand, there are two major drawbacks for this method:

1) The code used for our “test” router has to be deployed all over the world.

2) The sending filter is made to accept any kind of stream. So the method is irrelevant if the stream is not a bitmap video. In the case of compressed streams, or different streams that video, it will obviously not work. Indeed, most of nowadays web cam or digital cameras hardware-compress the video they produce, which means we would need to decompress before sending if we want to use a ROI/RONI method.

3) A router can usually read only the IP header of packet. RTP is an application layer protocol, which is not true for IP. So we used the TOS field of the IP header to store this information, but doing this is not as easy as changing a field in the RTP header, which is handled entirely in the application layer.

Since the sending and the receiving filters are part of the media subsystem of Windows, it is very easy to associate them with other components. During we were working on optimizing the displaying, we tried to put a DivX encoder before the RTP sender. Of course, we expected a huge latency, because doing this implies an on-the-fly compression, and on the remote computer another real-time decompression. But we tried anyway, mainly because it didn’t require any development. And oddly enough, we had absolutely no latency.

[image: image22.png][image: image23.png]A stereoscopic stream uncompressed (on the left), from 640x480 24bits cameras uses 80MBbp. The same stream DivX encoded (on the right) uses about 1Mbps, i.e. 1.25% of the bandwidth used without compression.

The problem of using a compressing codec before sending is that it just makes the ROI/RONI method inappropriate. (Marking a packet from a compressed buffer has no meaning).

The final idea for optimizing is to combine ROI-RONI and a compression method. Since it is impossible to mark packet from a compressed buffer, the idea is first to created a stream splitter, which will split the stream into the two regions. Then we can use two sending filters that will properly mark the packets.
[image: image24.png]
[image: image25.jpg]
A graph using a ROI-RONI method and some encoding filters.

[image: image26.jpg]
With this method, the main stream is split into an interesting stream and a not interesting stream, which are individually compressed, and sent using different sending filters. At the end of my internship, I could make a working prototype of the splitter, but the multiplexing filter (the opposite operation: taking 2 streams to produce only one) still needs to be done. In addition, no applications have been written to produce this kind of graph. The graph must be built manually, and the purpose of the splitting filter is only to test whether the ROI-RONI method is suitable in the case of real-time compressed transmissions.

Stereoscopy & displaying

In this section we will see how to deal with stereoscopy devices, and we will propose an approach for elegant and efficient programming.

Every stereoscopic application needs to have two output buffers: one for the right eye, the other for the left one. Most of time, those buffers are filled with data from a camera, which could be virtual in the case of a 3D model, but in any case, the aim of stereoscopy is to present different images to the right and left eyes.

There are two main categories of stereoscopy: the stereo active, and the stereo passive. The stereoscopy passive displays both left and right image on the screen, and a system like polarized glasses filters the left and the right image.

On the other hand, the stereoscopy active switch between left and right image, and another system, like active glasses usually hides alternatively the left and the right eye. In the context of this project, we dealt with both systems, through two different devices: “Stereographics Crystal Eye Shuttles” and “Sharp 3D LCD Display”.

Concerning the way to place cameras, here again there are 2 ways: both cameras can target the object, but in this case, if the object comes closer or farther the stereo will be poor, and in any case the background of the object will be meaningless (left and right will be completely different).

The other way is to make the cameras parallels, so we can get a globally good stereoscopy, even for the background, but this method requires shifting the resulting left and right image, in order to focus on a particular plane. To sum up, the user needs to adjust himself the focus. This is the method we decided to use for our application.

Active stereoscopic glasses

The “Stereographics Crystal Eye” glasses are quite easy to use, from a programmer point of view. They are bundled with a frequency adapter for a VGA screen. What is required is to display the left image on the top of the screen, and then right one on the bottom. Then once the adapter is switched on, it will double the vertical frequency of the screen, and the alternatively stretch the upper part and the lower part of what is displayed. Of course, the glasses are synchronized with the adapter: when the adapter stretch the upper image (left one), the right part of the glasses will be darkened, so only the left eye will see the left image. The same thing is done for the right image.

The advantage of this method is mainly the ease to program a stereoscopic application. Since the programmer doesn’t need to implement any modification or any process on the left and right buffer, a single copy is enough to produce a device compatible image. In addition, using glasses is not so painful, and the quality o the stereoscopy is very good.

The main drawback is probably the cost of those glasses, and the fact that only full screen modes are supported. Besides, even if the glasses are not so heavy, it may bother the user in the case of a long use. Finally, because only full screen modes are possible, the user cannot switch between applications.
[image: image27.jpg]The output required by the shuttles to produce 3D view

3D screens: Sharp 3D LCD Display

Here is another kind of device: 3D displays. This technology is emerging and it seems it will be the future of computers displays (maybe even TV). This type of display allows the user to see 3D without any other device. no glasses, the screen itself handles this part.

In this project, we could test and use a very recent Sharp 3D display. Here below is an explanation about this technology:

[image: image4.png]
Sharp 3D LCD display and the parallax barrier.

There is a parallax barrier, which has the same role as active glasses: to hide parts of the picture to one eye, and to show some other to the other eye. Actually, the system is a bit more complex: the parallax barrier doesn’t hide pixels, but only pixels components (red, green and blue).

That means that in order to generate the final buffer, we need to interlace pixels (left right left right), but also to shift components.

For instance, here is the original left buffer:

{LR0LG0LB0, LR1LG1LB1, LR2LG2LB2, LR3LG3LB3…}

And the right buffer:

{RR0RG0RB0, RR1RG1RB1, RR2RG2RB2, RR3RG3RB3…}

(LR2 is the red component of the 3rd pixel of the left buffer, for instance)

Then the final buffer must be

{LR0LG0LB0, RR0LG0RB0, LR1RG0LB1, RR1LG1RB1…}

[image: image5.png]
Final buffer for the Sharp Display, without activating the parallax barrier

So the good point of this method is the absence of glasses, and the possibility to make windowed application.

However, the buffer is not so easy to generate, and require per-pixel process, which is a quite heavy task for the processor. Also watching this screen for a while is a bit painful, particularly when we are not used to the screen.

As we could see, the process to generate compatible buffers is completely different from a device to another, and in some case, this process is also extremely costly from a performance point of view.

Performances and high-speed graphics processes

During we were working on the network part, we were thinking about performances. Reading data from the network interface, and recomposing the original stream takes time, and it would be more if we use compression. So the question was easy: how to generate a complex output buffer without slowing down the network/decompression process?

Processing an image at the pixel level is costly. Indeed, we have to deal with video, not images. So here is a simple evaluation: in the case of the Sharp 3D screen, we need to do two main operations for every pixel. The web cams produce 640x480 videos, 30 frames per second. So 640x480x30x2 (2 main operations)=18,432,000 main operations per seconds. Knowing that what we called “main operation” was actually much more than 1 CPU cycle, we really wondered how we could deal with such a task, not slowing the networking and uncompressing process.

Thanks to my experience on 3D processing, I could submit an interesting idea: What about using the hardware capabilities to generate this complex buffer? If we could make a part of the process done by the video card, the main processor would be almost dedicated to network and decompression.

Unfortunately, it was not that easy: to control video card processor cannot be done so easily.

So first we had to create a 3D context, and to display a 3D shape “like” a 2D video.

From 2D videos to 3D scenes

[image: image28.png]
The first step of this conversion was to create a 3D world, and to insert a simple object into.

It was also important to check we could render this object using the programmable pipeline (pixel and vertex shaders).

 A 3d donut displayed with a cartoon style rendering shader

Once we completed this first step, we had to modify the normal rendering filter of DirectShow. Actually, a simple rendering graph contains a video renderer filter, which usually creates the window and display the video data onto this window. Most of applications using DirectShow to render video merely change the position and the style of this window.

[image: image29.png]To be more precise, when an application uses DirectShow, this application creates its own window, or component, and set the window created by the default renderer as a child of the application’s window. In addition, the border of the DirectShow window is removed, so the video seems to be streamed directly into the application’s window.

A very simple graph to render a webcam

So our task was to remove the renderer, and to replace it with a custom renderer, in order to stream data on a Direct3D texture instead of a normal window.

[image: image30.png]This custom renderer will fill a Direct3D texture, so no window will be created, but it will allow use to use the video as a map for 3D objects.

The source filter is different, because this graph is generated by the software, while the previous one was created manually. We do not need a decompression filter because the camera filter (directly connected to the driver) can negotiate the media type.

[image: image31.jpg]
In order to test, we created a landscape, mapped it with our Direct3D texture, generated some bumps, lighted it and displayed it

Now that we could go from the 2nd dimension to the 3rd one, we can use the programmable pipeline to perform the generating buffer operations.

The programmable pipeline

There are two ways to consider 3D rendering on recent video cards: using the fixed pipeline, or using the programmable one. The fixed pipeline was the only choice for previous cards generations. The name is “fixed” because all the operation to process and display 3D objects are fixed, and have an hardware implementations. So the projection, rasterization, lighting, polygons filling etc… are accelerated, but there is no way to modify it. For instance, if you want a Phong shading instead of the default Gouraud shading, then you have to write your own software renderer, which will be slow because not accelerated, or to buy a card which can handle programmable pipeline.

[image: image32.png]
On the other hand, the programmable pipeline allows you to define how the graphic card will handle all this process. There are 2 main actors: vertex shaders and pixel shaders.

Both are little part of code, which can be executed by the video card. The vertex shader is called once per vertex, and its purpose is to transform the 3D data into 2D data (projection), and to prepare data to be interpolated for the pixel shader.

The pixel shader is called for every interpolated pixel (calculated from the vertex shader) and is mainly used for colorization.

In the case of our application, the vertex shader will transform the 3D shape to look like a 2D picture, but by doing this we are sure that for every pixel we will have a little process running: the pixel shader.

[image: image33.png]And since this process works on the video card, it buys a lot of time for the main processor.

A bit closer: HLSL

We needed a language for writing our shaders. There are two main languages: HLSL from Microsoft, and CG from Nvidia. Although both are compatible with DirectX and OpenGL, we preferred to use HLSL, because it’s a bit easier to compile it on the fly by the application. Here below is a simple code, which is actually used to generate a Crystal Eye compatible image (top/bottom):

//vertex shader
struct VS_OUTPUT

{

 float4 Position : POSITION;

 float2 TexCoord : TEXCOORD0;

 float2 TexCoord2 : TEXCOORD1;

};

VS_OUTPUT VS(float4 Position : POSITION, float2 TexCoord : TEXCOORD0)

{

 VS_OUTPUT Out;

Out.Position[0]=(2*TexCoord[0])-1;

Out.Position[1]=(2*TexCoord[1])-1;

Out.Position[2]=1;

Out.Position[3]=1;

Out.TexCoord=TexCoord;

Out.TexCoord2=TexCoord;

Out.TexCoord2[0]*=windowsize[0];

 return Out;

}
As you can notice, the code of the vertex shader is pretty simple: it sets the z and w components of the vertex position to 1, and adjust x and y depending on the mapping coordinates. This operation will “put” the shape in front of the camera, and stretch it to fill the entire window.

In addition, there are 2 interpolated values: the mapping coordinates (between 0 and 1), and the mapping coordinates multiplied by the window size. This way, for every interpolated pixel, we will get a value between 0 and 1 for the “standard” mapping coordinate (we will use this value to lookup the texture), and a value between 0 and the size of the window. We need this one to know, for instance if the pixel we are processing is odd or even (crucial information in the case of the Sharp screen)

//pixel shader shuttles
float4 PSShuttles(float2 Tex : TEXCOORD0,float2 preoffs:TEXCOORD1) : COLOR

{

 float4 col={0,0,0,0};

 Tex[1]*=2;

 if(Tex[1]>1)

 {

 --Tex[1];

 col=tex2D(samplerL, Tex);

 }

 else

 {

 col=tex2D(samplerR, Tex);

 }

 return col;

}

The pixel shader code is also quite simple. Because of the vertex shader, we will get the mapping coordinates as a parameter. First, we multiply the y coordinate by 2. If the value is above 1, than mean we are on the lower part of the window. So we reajust the coordinate to have it between 0 and 1, and we perform a texture lookup onto the left image. (Tex2D is the function for texture lookup)

If the coordinate is not above 1, this means we are displaying a pixel of the upper part. After that we just need to lookup onto the right image.

HLSL also allows using techniques, which make the application even easier to modify. Within a technique, you can specify which shader you will use. It is also easy from the main application to get a list of all the available techniques of a compiled file.

For instance:

technique Sharp3D

{

 pass P0

 {

VertexShader = compile vs_2_0 VS();

PixelShader = compile ps_2_0 PSSharp3D();

 }

}

technique CrystalViewShuttles

{

 pass P0

 {

VertexShader = compile vs_2_0 VS();

PixelShader = compile ps_2_0 PSShuttles();

 }

}
Here above are two of the four techniques we defined in the file. The only difference between techniques is the pixel shader they use (the vertex shader can be the same, because its function is merely to stretch the picture).

And in the main application:

[image: image6.png]
Technique selection in the main application.
Conclusions

This way to process 2D graphics offers many advantages, however some drawbacks are to be expected.

· This model allows performing very fast image operations. Those operations usually cost a lot of processor time, since they are done for every pixels. To sum up, this is a way for real time graphics processing.

· Since the video card handles everything, the main computer has much less stress. Every costly task, like texture lookup, or coordinates interpolation is done by hardware.

· This method puts video or image into Video Memory, which is quite faster than RAM.

· Since the code of vertex and pixel shader is running on the video card, we can access every hardware-coded mathematic function, like matrix operations, or trigonometric functions.

· Usually, when doing stereoscopic image, right and left has to be the same resolution. Since in this case, we deal with mapping coordinates, which are obviously interpolated, we don’t mind this anymore. (However, the stereo results are better with same resolution)

· The color space is not a problem anymore: in usual applications, the programmer has to write a code for every color space. The operations will be different if the color space is RGB32 or R5G6B5…
· Because the code of shader is compiled by the application using it, it can be seen as a module. Therefore it is very easy to make reusable code. For instance, the grayscale to color gradient, the Crystal Eye up-down buffers and the sharp interlaced video are produced by the same application. No need to recompile. Only the shader is different. And since we used HLSL for our shader language, we have only 1 file, containing many techniques.

On the other hand, this model requires a very recent hardware (>=PS 2.0, i.e. GeForce4), and a 3D context needs to be created. In addition, in the case of 3D stereo applications, programmers will need to perform a double pass rendering, once rendering their shape on a texture, and the second render for the image processing.

To sum up, even if there are some black points, this method can be applied very easily, and will allow programmers to cover many different devices without touching their 3D engine, or merely to perform real time image transformations.
Appendix

A custom file type: .rml

The first appendix we made on this project was the definition of a custom file type for the media player. Rml, or remote media location is a type of file referencing a stream server.

The file cannot be easier: it is a mere text file containing the following information:

· Simple header

· Hostname or IP address

· Remote port, or which TCP port the client is supposed to connect

· The local RTP port which will receive the raw data transmitted by the server.

Here below is an instance of rml file:

FRML=1.0
header
host=192.168.11.3
hostname or ip
remote_port=1200
remote port
local_port=1201
local port
Then, to register this custom type, we needed to add the following entry in the registry base:

HKEY_CLASSES_ROOT\Media Type\Extensions\.rml\Source Filter

Containing {CF5604E6-7126-462a-BE47-E432383B9243}.
This big string is actually the GUID of the RTP receiver filter.

So if a user tries to open a “.rml” file, the windows media subsystem will automatically use this filter. Then it was really easy to do a “media player like” software which could play every file the media player can play, including “.rml” files.

Web Server & Web notification

Another improvement of the original project was the web publication of streams. Basically, it started from the idea to make a little tutorial about how to use a TWTCPSERVERSOCKET, which is a class of the TeapotWare SDK.

A web server is nothing more than a TCP server that can send files over the network. So we made this little server using TeapotWare, in about one hour and half. Then, we started thinking about the dynamic part: since it was not so hard to build a C++ web server, what about improving it to allow dynamic pages? Since we had a lot of time at this moment of the project, we decided to start digging the idea. 2 hours later, we had a basic support of a C++ equivalent of Java servlets.

The advantages of this kind of server are simple: rapidity and security. With a normal application server, or even a servlet engine like Tomcat, if a hacker can access the hard disk of the server, then he can un-compile every java class, and understand clearly, for instance, how the database is structured. In addition, he could create himself a little security backdoor to allow him… more than a normal user could do.

To sum up, a hacker who could access the hard disk of the server can feel at home.

With our approach, the equivalent to the servlet are kind of C++ compiled DLL. Even if someone could access to this kind of file, it would take quite a lot before he could understand what is doing this file, and indeed how the database is accessed.

In addition, java is much slower than C++, particularly in the case of system calls, so the difference of speed is appreciable. The main reason web developers use java instead of C++ is that they need a code running on any kind of OS, which is also true with TeapotWare, and because java provides much more helper functions than C++, but TeapotWare also provides helpers…
It may sound like this is an idea solution, but this SDK is still in development, and the model I proposed is not as complete as real servlet. However, since it worked well enough to handle this part, we used it for the web notification system of the project.

Servlet-like modules

A TW module is quite easy to create. The programmer merely needs to create a dynamic library, and to write a class inheriting from TWSRVMOD.

class PubStream : public TWSERVMOD

{

private:

void MakeRML(STREAM *strm);

int fref;

TWREFCOLLECTION <STREAM*> streams;

public:

PubStream();

~PubStream();

void OnGet(TWSOCKET *s,TWPROPERTYBAG *pb);

};

DECL_TWMODULE(PubStream);
The only method to be overloaded is OnGet. Is directly receive the connected socket, and the property bag contains all the data passed as parameter. For instance, for

www.myserver.com/testservmod?x=15&y=hello, the property bag will contain 2 entries, x and y, having for value respectively 15 and hello.

Another important thing to do is to provide a default constructor, and to specify the URL that has to be mapped on the servlet-like module. In the case of the example,

PubStream::PubStream()

{

fref=0;

targeturl="pubstream.htm";

}
Web server

We won’t talk a lot about the server here, because it is quite easy to understand. Globally, it opens a TCP connection as server, and creates a new thread for every incoming connection. Then once this process is done, it will merely process incoming requests, as illustrated below.

[image: image7.jpg]
The web server procedural diagram

How to use the server with our application

Now knowing that we could use a dynamic web server, it was quite easy to add the notion of public streams to the main sender application. Every user is not familiar with IP addresses, nor port number, so the main idea was to simplify the “asking for information” task.

In order to work, the sender application only needs a port number. This port will be used for a TCP connection in order to transmit media types. On the other hand, the receiver needs 3 informations to work properly: the host address, its TCP port number, and a local port number that will be used to receive RTP data.

In order to make it easier, we settled a notion of public stream. In the sending application, there is a check box and a text field. If the user fill in those fields, then the sender will also connect a servlet-like module to register a stream. Anyone connected to the website will be able to see all the required informations to connect the stream sender. In addition, a .rml file will be created by the servlet-like module, and everyone will be allowed to download this file, which, as explained before, contains everything for connecting a remote stream.

And since this kind of file is registered, and can be opened with our RTP receiver filter, then almost every media-player compatible players will be able to open it directly. To sum up, the final user will only be required to visit a web page in order to display a video.

[image: image8.jpg]
On this screenshot we can see the entire process: first, a sender application binds 2 streams to 2 different ports. Both streams are defined as “public”, and a short description is given. So before listening for stream client, the application will notify the web server about those 2 streams. (The black window is the web server).

As we can see, any web browser can access the dynamic web page generated by the servlet-like module. This page displays the IP address of the sender, the port used, and the short description. If the user click on the IP address, then the web server will send a .rml file, which can be read directly by an appropriate player, or by the main receiver software. So the final user just needs to open Internet Explorer or another web browser and to click on the stream he wants to see.

NSIS Installers

For this project, we had to develop many applications. Since those applications were most of time using the same methods, we made all those applications using Dynamic Linked Libraries, or DLL.

In addition, our custom file type needed to be registered else the Windows media subsystem will be unable to associate it with our RTP source filter.

Finally, filters are Windows components, and as almost every Windows component, they require to be registered as well.

Knowing that we might need to modify the registry base several times, using an installer rather than a compressed archive, like zip, in order to copy our application was a natural idea.

NSIS, or NullSoft Installer System has the advantage to be free, and a script based installer builder. So here below are the results we got after writing several lines of script:
[image: image34.jpg]

The script

The compiler

The final result

TeapotWare

TeapotWare is the name of an open source SDK. Being the main author of this software framework, I used it as possible for this project. The point of this SDK is to allow programmers to write cross-platforms code dealing with advanced multimedia processes.

It covers many fields, like networking, mathematics, 3D, media streaming, and is a module-based SDK, which means that changes can be done easily and without any influence for the programmer using TeapotWare.

Here below is a sample, to illustrate how simple it is to use this SDK:

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hInstP, LPSTR lpCmdLine, int nCmdShow)
{

TWMODMANAGER
mgr;

TWMEDIASTREAM
*stream;

TWSTREAMMOD
*strmmodl

strmmod=(TWSTREAMMOD*)mgr.LoadMod("twstream.twm"); //easiest way to load a module

strmmod->Init();

//initialize the module

stream=(TWMEDIASTREAM*)strmmod->GetVideoStream(0);
//retrieve the 1st webcam

stream->Init();

 //initialize the webcam

stream->SetOutput(1200,1201);
//bind the stream to the ports 1200 & 1201
stream->Play();

//play the stream (threaded)

TWSTRING str=“”;

std::cout<<“Type exit to quit”

while(str!=“exit”) std::cin>>str;
//main loop

stream->Stop();

strmmod->ReleaseStream(stream);

strmmod->Release();

mgr.Release();

return 0;

}

This example illustrates particularly the effectiveness of TeapotWare. Only 20 lines for this example, but it will use the data of the 1st connected webcam. TV card, or any connected device, and be a stream server for the generated video. So anyone can connect the port 1200 of this machine, and if the application is running, the video will be sent over the network, using RTP protocol.
Conclusion

This project has been more than interesting on many points of view: First, on a technical point of view, I had to work under Linux, to deal with drivers, to learn how to write a windowed application using GTK+, then under windows I had to write 6-7 applications, from a RTP simple dumping app. to the complex receiving application, so I got familiar with MFC, Win32 and Win32 Dll programming.

Since I wanted to use shaders, I had to learn HLSL, to brush up my skills about Direct3D, and to dive deep into COM and the Media system of Windows. I also learnt a lot about networking, things like modifying an IP header, or implementing a protocol are lit with a new light for me.

On the linguistic point of view, I of course improved my Japanese, but I still need a lot of practice if I ever want to participate to a normal conversation. On the other hand I could also brush up my English: movies are only in original version, and it is quite hard to find French books here. In addition, the working language was English.

Considering the human side of this internship, I could find help from everyone, even not speaking English very well. It was really interesting to work with people having a completely different cultural reference.

Lexicon

RTP (Real-Time Transmission Protocol):

The Internet-standard protocol for the transport of real-time data, including audio and video.

RTCP (Real Time Transmission Controlled Protocol):

RTP based protocol providing a bit more controls on the transmission.

UDP (User Datagram Protocol):

A connection-less, unreliable, transport protocol that provides multiplexing and error detection for applications, which require a low-cost protocol for one-shot transactions
TCP (Transmission Control Protocol):

Internet networking software that controls the transmission of packets of data over the Internet. Among its tasks, TCP checks for lost packets, puts the data from multiple packets into the correct order, and requests that missing or damaged packets be resent.
DirectShow Filters:

Components very similar to ActiveX, i.e. ATL COM Dlls. They compose any media graph.

Codec:

Set of direct show filters, which allow encoding or decoding a media.

DLL:

Dynamic Linked Library. Software functions or objects that are stored in a library linked with the main application only at run-time

GUID:
Global Unique ID.

Unique identifier for every Windows component or sub-component.

MFC: Microsoft Foundation Classes.

Base classes used for writing Windows applications

Bibliography

· Microsoft Developers Network (MSDN) (http://msdn.microsoft.com/)

· RFC 3550 & RFC 1889 (RTP definition)

· “IP Telephony with H323”, by V.Kumar, M.Korpi and S.Sengodan, edition Wiley, published in 2001.

· Experts exchange (www.experts-exchange.com)

Software used

· Visual Studio 6

· GraphEdit

· EffectEdit

· Kwrite

· Gcc

Applications developed
· A simple web server, able to run servlet-like modules.

· A DV player for Linux
· A lot of tutorials like a 3D video mapper or a RTP analyzer.

· The stream sender

· The stream receiver

· The RTP sending/receiving codec.

2

